On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems
نویسندگان
چکیده
In this paper, we investigate the number of limit cycles for a class of discontinuous planar differential systems with multiple sectors separated by many rays originating from the origin. In each sector, it is a smooth generalized Liénard polynomial differential system x′ = −y + g1(x) + f1(x)y and y′ = x + g2(x) + f2(x)y, where fi(x) and gi(x) for i = 1, 2 are polynomials of variable x with any given degree. By the averaging theory of first-order for discontinuous differential systems, we provide the criteria on the maximum number of medium amplitude limit cycles for the discontinuous generalized Liénard polynomial differential systems. The upper bound for the number of medium amplitude limit cycles can be attained by specific examples.
منابع مشابه
On the Number of Limit cycles for a Generalization of LiéNard Polynomial differential Systems
where g1(x) = εg11(x)+ε g12(x)+ε g13(x), g2(x) = εg21(x) + ε g22(x) + ε g23(x) and f(x) = εf1(x) + εf2(x) + ε f3(x) where g1i, g2i, f2i have degree k, m and n respectively for each i = 1, 2, 3, and ε is a small parameter. Note that when g1(x) = 0 we obtain the generalized Liénard polynomial differential systems. We provide an upper bound of the maximum number of limit cycles that the previous d...
متن کاملLimit Cycles for a Class of Discontinuous Generalized Lienard Polynomial Differential Equations
We divide R2 in l sectors S1, ..., Sl, with l > 1 even. We define in R2 a discontinuous differential system such that in each sector Sk, for k = 1, ..., l, is defined a smooth generalized Lienard polynomial differential equation ẍ + fi(x)ẋ + gi(x) = 0, i = 1, 2 alternatively, where fi and gi are polynomials of degree n−1 and m respectively. We apply the averaging theory of first order for disco...
متن کاملLimit Cycles of a Class of Generalized Liénard Polynomial Equations
In this paper we study the maximum number of limit cycles of the following generalized Liénard polynomial differential system of the first order ẋ = y2p−1 ẏ = −x2q−1 − εf (x, y) where p and q are positive integers, ε is a small parameter and f (x, y) is a polynomial of degree m. We prove that this maximum number depends on p, q and m. AMS subject classification:
متن کاملThe number of medium amplitude limit cycles of some generalized Liénard systems
We will consider two special families of polynomial perturbations of the linear center. For the resulting perturbed systems, which are generalized Liénard systems, we provide the exact upper bound for the number of limit cycles that bifurcate from the periodic orbits of the linear center.
متن کاملLimit Cycles in Two Types of Symmetric LiÉnard Systems
Liénard systems and their generalized forms are classical and important models of nonlinear oscillators, and have been widely studied by mathematicians and scientists. The main problem considered is the maximal number of limit cycles that the system can have. In this paper, two types of symmetric polynomial Liénard systems are investigated and the maximal number of limit cycles bifurcating from...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Bifurcation and Chaos
دوره 25 شماره
صفحات -
تاریخ انتشار 2015